Maths HL10 Extended - Quadratic, Reciprocal and Exponential graphs

1 The graph of $y=x^{2}$ is drawn on the grid.
a The table shows some corresponding values of $y=x^{2}+3$. Copy and complete the table by filling in the missing values.

\boldsymbol{x}	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
\boldsymbol{y}		5.25	4	3.25	3		4	5.25	7

b Plot the graph of $y=x^{2}$ and the graph of $y=x^{2}+3$ for $-2 \leqslant x \leqslant 2$ on a grid.
c Will the two curves ever meet? Explain your answer.
d By drawing a suitable straight line on the same grid, solve the equations:
i $x^{2}=6$
ii $x^{2}+3=6$

2 Look at these sketch graphs. For each one, write the general form of its equation. Use letters to represent any constant values if you need to.
a

b

c

d

e

3 Six sketch graphs are shown here.
i

iv

ii

v

iii

vi

Match the graphs to the following equations.
a $y=1+x-2 x^{2}$
b $y=3^{x}$
c $y=x^{3}+x^{2}+1$
d $y=-\frac{16}{x^{2}}$

4 a In a chemical reaction, the mass, M grams, of a chemical is given by the formula $M=\frac{160}{2^{t}}$ where t is the time, in minutes, after the start.

A table of values for t and M is given below.

\boldsymbol{t} (min)	0	1	2	3	4	5	6	7
$\boldsymbol{M}(\mathbf{g})$	p	80	40	20	q	5	r	1.25

i Find the values of p, q and r.
ii Draw the graph of M against t for $0 \leqslant t \leqslant 7$. Use a scale of 2 cm to represent one minute on the horizontal t-axis and 1 cm to represent 10 grams on the vertical M-axis.
iii Draw a suitable tangent to your graph and use it to estimate the rate of change of mass when $t=2$.
b The other chemical in the same reaction has mass m grams, which is given by $m=160-M$. For what value of t do the two chemicals have equal mass?

