Maths HL10 Extended – Quadratic, Reciprocal and Exponential graphs

1 The graph of $y = x^2$ is drawn on the grid.

a The table shows some corresponding values of $y = x^2 + 3$. Copy and complete the table by filling in the missing values.

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	
y		5.25	4	3.25	3		4	5.25	7	1

- **b** Plot the graph of $y = x^2$ and the graph of $y = x^2 + 3$ for $-2 \le x \le 2$ on a grid.
- c Will the two curves ever meet? Explain your answer.
- **d** By drawing a suitable straight line on the same grid, solve the equations: **i** $x^2 = 6$

```
ii x^2 + 3 = 6
```


2 Look at these sketch graphs. For each one, write the general form of its equation. Use letters to represent any constant values if you need to.

3 Six sketch graphs are shown here.

Match the graphs to the following equations.

- **a** $y = 1 + x 2x^2$ **b** $y = 3^x$
- c $y = x^3 + x^2 + 1$

$$\mathbf{d} \qquad y = -\frac{16}{x^2}$$

4

a In a chemical reaction, the mass, *M* grams, of a chemical is given by the formula $M = \frac{160}{2^t}$ where *t* is the time, in minutes, after the start.

A table of values for t and M is given below.

<i>t</i> (min)	0	1	2	3	4	5	6	7
<i>M</i> (g)	P	80	40	20	9	5	r	1.25

- i Find the values of *p*, *q* and *r*.
- ii Draw the graph of *M* against *t* for $0 \le t \le 7$. Use a scale of 2 cm to represent one minute on the horizontal *t*-axis and 1 cm to represent 10 grams on the vertical *M*-axis.
- iii Draw a suitable tangent to your graph and use it to estimate the rate of change of mass when t = 2.
- **b** The other chemical in the same reaction has mass *m* grams, which is given by m = 160 M. For what value of *t* do the two chemicals have equal mass?